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Figure 1. Given the mesh of an articulated object and its 7 DoF trajectories with 6D global states and 1D articulation, BimArt generates
diverse and plausible hand motions that justify the object’s trajectory. Distance-based contact maps act as intermediate features for hand-
object interaction, enabling our method to generate diverse and realistic bimanual motions.

Abstract

We present BimArt, a novel generative approach for syn-
thesizing 3D bimanual hand interactions with articulated
objects. Unlike prior works, we do not rely on a refer-
ence grasp, a coarse hand trajectory, or separate modes
for grasping and articulating. To achieve this, we first gen-
erate distance-based contact maps conditioned on the ob-
ject trajectory with an articulation-aware feature represen-
tation, revealing rich bimanual patterns for manipulation.
The learned contact prior is then used to guide our hand
motion generator, producing diverse and realistic bimanual
motions for object movement and articulation. Our work
offers key insights into feature representation and contact
prior for articulated objects, demonstrating their effective-
ness in taming the complex, high-dimensional space of bi-
manual hand-object interactions. Through comprehensive
quantitative experiments, we demonstrate a clear step to-
wards simplified and high-quality hand-object animations
that excel over the state-of-the-art in motion quality and di-
versity.

1. Introduction

Humans engage with articulated objects in countless ways
throughout the day, whether it is twisting the cap of a water
bottle, tilting a laptop screen for better viewing, or deftly

slicing through paper with a pair of scissors. Although
these interactions seem effortless for humans, they are chal-
lenging to generate computationally due to the highly com-
plex and high-dimensional space of bimanual hand anima-
tions that not only rigidly move an object, but also gener-
ate meaningful object articulations. From a 3D modeling
perspective, these motions require a deeper understanding
of the individual object parts, their interaction affordances,
and their geometry.

Despite substantial progress in 3D character animation
research [20, 35, 56, 81] driven by deep learning and gen-
erative models, recent works either focus on synthesizing
whole-body without considering hands [56, 69], or gener-
ate hand-object interaction assuming objects are rigid [9,
16, 77]. Very few studies address 3D bimanual interac-
tions with articulated objects. Methods that are designed
for articulated objects either work in a category-specific
manner [82] for unimanual motions, cannot simultaneously
perform articulation and object root translation and rota-
tion [78], or rely on noisy hand-object interaction sequences
as input and refine hand motions afterwards [39]. Some
works [16, 78, 82] also assume the initial or goal grasp to
be known, which can be a restrictive assumption for non-
expert users.

In contrast to prior works, BimArt operates with relaxed
assumptions: it does not assume a known reference grasp, is
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not trained in an object-specific manner, does not require a
coarse hand trajectory, and can perform object articulation
simultaneously with the object’s root rotation and transla-
tion (see a conceptual comparison in Tab. 4 in the supple-
mentary material). Given object trajectories, which involve
global translation, rotation, and articulation, BimArt gen-
erates diverse and realistic bimanual motions for grasping
and articulating the object (see Fig. 1). We propose a three-
stage approach: Our Bimanual Contact Generation model
first generates contact maps, capturing dynamic interactions
between the hand and the object over time. Next, the gener-
ated contact maps and the object geometry are used as con-
ditionings to synthesize hand animations using our genera-
tive Bimanual Motion Model. Finally, we refine the gener-
ated animations with contact guidance, followed by explicit
optimization to remove artifacts like penetration or missing
hand-object contact.

To be category agnostic and to accommodate a wide ar-
ray of geometries, we propose a novel articulation-aware
representation based on basis point sets (BPS) [50], origi-
nally defined as a collection of vectors from a fixed set of
points in space to the nearest vertices of the object. Our
representation involves normalizing the object’s scale and
then computing the distance vectors from the BPS to each
articulated part independently. This part-based representa-
tion treats each component of an object equally, ensuring
that different surface areas have similar spatial encoding
resolution. Given the above object encoding, our contact
generation network predicts distance-based bimanual con-
tact maps, which serve as an intermediate generation target,
removing the need for a reference grasp. Our key insight
is that frame-wise contact maps embedded on the object
capture diverse grasping patterns and offer more nuanced
and detailed information compared to sparser or stage-wise
contact points [35, 47, 82] for bimanual interaction synthe-
sis. We evaluate BimArt on ARCTIC [14] and HOI4D [40]
datasets and achieve state-of-the-art performance in terms
of interaction plausibility and diversity.

To summarize, our contributions are as follows:
• BimArt, a new approach for bimanual hand motion syn-

thesis for interaction with articulated objects;
• A canonicalized and part-aware object feature represen-

tation, which is able to encode diverse and articulated
objects in a unified representation well suited for object-
aware hand animation synthesis;

• A generative model for bimanual contact maps that serve
as an interaction prior for our hand motion synthesizer.

2. Related Work
3D Human Motion Synthesis. 3D human motion synthe-
sis is an active and long-standing research field [1, 3, 4,
15, 25, 34, 44, 48, 49, 57, 67, 80]. Over the last years,
neural-network-based methods have dominated it, aided by

the availability of large-scale datasets of body-only [28, 43],
hands-only [6, 18, 45], or whole-body motion [14, 58]. Dif-
fusion models have manifested their potential to generate
diverse and high-quality motions using conditioning sig-
nals such as text, audio, scene context, or the movements
of other people [11, 17, 31, 35, 36, 46, 49, 61, 69, 73]. All
these methods synthesize full-body, while hand-object in-
teraction requires more fine-grained consideration of joint
movement and alignment with object geometry.

Hand-Object Interaction. Similar to 3D human mo-
tion synthesis, the introduction of hand-object interaction
datasets [2, 14, 40, 41, 58] has led to rapid developments in
3D hand and object pose reconstruction [13, 70, 71, 75, 85],
static grasp synthesis [29, 30, 32, 38, 60, 62, 72], hand-
object interaction (HOI) motion denoising [19, 39, 83], and
dexterous object manipulation in robotics [8, 27, 33, 63, 65,
66, 68, 74]. However, existing methods [5, 16, 53, 59, 76,
82, 84] either generate single hand motions, do not work
with articulated objects [16, 53, 59, 76, 84], or rely on dif-
ferent input assumptions such as hand trajectories [76] or
textual task descriptions [5, 10, 47]. Among works that
show applicability in articulated objects, text condition-
ing [5] lacks fine-grained control over object paths that is
often essential in artistic creation. ArtiGrasp [78] requires a
reference pose and cannot handle grasping and articulation
simultaneously. CAMS [82] relies on the initial grasp as
input and trains a separate model per category. In contrast,
we train a unified model for all categories and do not rely
on reference poses.

HOI Feature Representation. Existing HOI feature
representations [5, 72, 76, 82, 84] are either not suitable for
motion synthesis or fail to emphasize the articulated struc-
ture of objects, which is our focus. ManipNet [76] utilizes
a coarse voxel-based representation to capture the object’s
global geometry for rigid objects. CAMS [82]’s stage-wise
contact target design struggles to capture the rich biman-
ual interaction patterns. Works focusing on motion denois-
ing [39, 83] compute detailed spatiotemporal features, such
as motion velocities and contact correspondence. However,
generating these features from scratch without assuming an
initial motion is challenging and may overconstrain the syn-
thesis model, leading to lower diversity. In contrast to these
previous works, we propose a part-based object representa-
tion specifically designed for articulated objects, ensuring
that objects with unbalanced part sizes are not disadvan-
taged. Additionally, our hand representation encodes both
surface positions and distances to the object, enhancing in-
teraction plausibility.

3. Method
Our goal is to generate realistic, diverse, and contact-aware
3D bimanual motion from a sequence of articulated object
states. We consider two-part articulated objects with a total
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Figure 2. Overview. BimArt takes N frames of object trajectories as input and generates N frames of 3D bimanual interactions. The
object features (articulation-aware BPS features O, 6D global states G, and the object scale so) are passed into both the object encoder
Eo (MLP) in the contact generation model and Eα (MLP) in the motion generation model. Additionally, the motion generation model’s
contact encoder Ec takes C, the bimanual contact map produced by the contact generation model, as conditioning input. The contact model
and motion model are both denoising diffusion models, and the spiral denotes the denoising process. C is further used as guidance at each
diffusion timestep to align hand motions with the generated contact maps. Finally, we use optimization to correct contact and penetration
artifacts and obtain 3D bimanual meshes.

of seven degrees of freedom: six degrees for the root’s ori-
entation and translation, and one degree for the rotational
joint. The input to our method is the articulated object tra-
jectory, ξ = {ξi}Ni=1, ξi = [gi|ai], where gi ∈ R6 denotes
the object’s orientation and global translation, and ai ∈ R
represents the articulation angle between the two parts of
the object. Given ξ, BimArt generates a corresponding, N -
frame bimanual motion Θ = {Θi}Ni=1, where Θi ∈ R61×2

corresponds to MANO [51] hand parameters for both hands.
Fig. 2 outlines our method. We first introduce an

articulation-aware canonicalized feature representation for
the object (Sec. 3.1). By keeping the canonicalized object at
the origin of the coordinate system, we provide a consistent
frame of reference for the object as well as the hands. Next,
motivated by the observation that contact understanding fa-
cilitates more accurate finger placement, we decompose the
task into contact map generation (Sec. 3.2) and motion syn-
thesis based on the generated contact map (Sec. 3.3). Lastly,
we use an optimization-based post-processing step to re-
solve physical artifacts such as penetration and inconsistent
contact. (Sec. 3.4).

3.1. Hand and Object Representation
Hand Representation. We encode hand motion in an
object-centric way, with each hand at frame i parameter-
ized by both surface keypoint positions Hi and direction
vectors to the object Di as shown in Fig. 3. More specif-
ically, Hi ∈ RJ×3 is a sparse set of vertices sampled from
the MANO surface vertices Ξi. Di ∈ RJ×3 denotes the
direction vectors originating from the hand keypoints Hi

to their nearest object vertices. Di encodes both the direc-
tion and the magnitude. Compared with the MANO skele-
tal joints, this representation is denser, making it easier to
recover MANO parameters, Θi. In addition, the incorpora-
tion of Di aids the model in reasoning about contact.

Figure 3. Hand Representation We parameterize each frame of
hand pose by using J surface keypoints (in orange), sampled from
the surface of the hand. In addition to position, we also use the
direction vector (dark blue lines) from each keypoint to the nearest
object surface as an additional feature.

To generalize to unseen object trajectories and disentan-
gle object motion due to articulation and global trajectory
changes, we propose to encode the hand in the object’s
canonical coordinate frame, i.e. the frame where the ob-
ject’s articulation axis is aligned with the negative z-axis.
Let Vi denote the object vertex positions at frame i, and
M be its canonical-to-world transformation matrix. We
transform the hand point cloud and object vertices from the
world frame Hw

i to the object’s canonical frame Ho
i such

that Ho
i = (M)

−1
Hw

i and Vo
i = (M)

−1
Vi. In the rest of

the paper, we omit o, since all hand motions are generated
in the object’s canonical frame.

Object Representation. Next, we define the object fea-
ture representation. Training a single model across multiple
object types necessitates a feature representation that en-
codes geometric information consistently while remaining
independent of the object topology. We therefore represent
the object trajectory using Basis Point Sets (BPS) [50].

The BPS representation requires defining a fixed set of
basis points B ∈ RK×3 that are typically uniformly sampled
from the unit sphere. The BPS features are then computed
as a set of vectors from B to the nearest object vertices. This
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formulation will lead to a suboptimal sampling strategy for
objects with articulated parts at different scales. In contrast
to the original BPS formulation, we propose to use normal-
ized part-based BPS features computed in the object-centric
frame where the same basis point set is mapped separately
to each articulated part. Let so denote the object scale, com-
puted by normalizing the maximum distance from the origin
to the object vertices (Vao) with an open articulation angle
in the canonical space:

so =
1− dmargin

maxv∈Vao ∥v∥
(1)

A margin dmargin is used to prevent the object pointcloud
from touching the boundary of the unit ball. To provide a
denser mapping from basis points B to object vertices V,
the object is normalized to the unit sphere, using so. The
normalized, part-based BPS features can then be computed
as:

Op
i =

[
argmin
v∈Vp

i

d(
v

so
,b)− b , for b ∈ B

]
(2)

O = [Op
i , for i ∈ {1, 2, . . . , N}, p ∈ {top, bottom}] (3)

In Eq. (2), d(·) is the Euclidean distance between two points
and p denotes the part index. Notably, we do not perform
a part-based scale normalization, since hand motion H is
encoded in the original scale, and having separate object
scales in canonical spaces will increase the difficulty for the
model in reasoning about hand object distance and contact.

Alternatively, one could sample the basis points in the
original scale of the object without normalizing the object
to a unit sphere or using a part-agnostic BPS mapping; the
comparison for different sampling strategies is shown in
Fig. 4. Our part-based BPS with scale normalization pro-
vides a denser mapping to the object, thus forming a more
detailed descriptor of the object geometry. Crucially, it en-
sures that the objects with a small articulating part (eg. the
lid of a ketchup bottle) are not under-sampled against the
larger base.

Our BPS feature O is independent of the object’s global
trajectory, encoding only the object’s shape and articula-
tion states. However, without encoding the object’s global
movement, the generated motion will be physically implau-
sible since it is not aware of the gravity direction and can-
not distinguish the object trajectories that require a support-
ing hand at the bottom. Therefore, we further include the
global states G = [gi]

N
i=1 as a lower dimensional 6D vector

per frame, which consists of relative translation to the first
frame and the global rotation. Relative translation is used
to avoid overfitting and increases robustness to unseen test
trajectories. Overall, O and G capture the detailed object
geometry, articulation movement, and global movement.

Figure 4. Different BPS Sampling Strategies. Top left: K × 2
basis points sampled uniformly within a 0.5-meter radius for un-
normalized objects. Top middle: K×2 BPS sampled uniformly in a
unit ball for normalized objects. Top right: K basis points sampled
uniformly in a unit ball for normalized objects, with points mapped
to each articulated part of the object, maintaining the same feature
dimension. Bottom: Green points on the object represent the pro-
jections of the BPS feature vectors. The proposed Normalized Part
BPS provides denser mapping on the object’s inner surface layer.

3.2. Bimanual Contact Generation Model
Having defined our articulated object representation, we in-
troduce our novel denoising diffusion probabilistic model
for generating plausible bimanual contact maps. Impor-
tantly, our contact model can be jointly trained on cross-
category articulated objects, thanks to our generalizable ob-
ject representation.

Given our object BPS features O, global states G, and
the object scale so, the contact model generates the corre-
sponding sequence of contact maps for the left and right
hand, i.e. C = [Cρ], ρ ∈ {left, right}.

Our bimanual contact maps at frame i are defined as the
minimum distance from each object vertex v from any of
the hand vertices Ξρ

i for each hand:

Cρ
i =

[
argmin
h∈Ξρ

i

d(h,v)− v , for v ∈ Ṽi

]
, ρ ∈ {left, right}

(4)
where Ṽi = Oi+B, the closest object vertices from the ba-
sis points B. We generate separate contact maps for left and
right hand to reduce ambiguity when using them as guid-
ance in the motion generation (see Sec. 3.3). Note, that
our contact map does not encode correspondence between
which hand vertex should be in contact with the object ver-
tex, as doing so would over-constrain the sampling process,
thereby hindering motion diversity.

For contact generation, we adopt a denoising diffusion
probabilistic model [23, 54] with a transformer-encoder ar-
chitecture [61, 64], trained to directly predict clean sam-
ples C. The model’s conditioning inputs include our BPS
features O, global states G, and so, which are processed
through an MLP encoder, Eo. We predict a contact value
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per BPS feature in O, facilitating cross-object predictions as
the output dimension is fixed by the number of BPS points
and remains independent of the object’s mesh resolution as
shown in Eq. (4). Next, we show how these generated con-
tact maps are used to synthesize hand motions (Sec. 3.3).

3.3. Bimanual Hand Motion Model
Given the object features O and the contact maps C, our
motion model generates N frames of hand motions, param-
eterized by X = [H|D] as illustrated in Fig. 2. Specifically,
the conditions include:
• Object Conditioning: The BPS features O, object global

states G, and the object scale so are encoded using the
object encoder Eα into a latent object embedding Zo ∈
RN×Lo , where Lo denotes the latent dimension.

• Contact Conditioning: The contact maps C are encoded
using the contact encoder Ec into a latent contact feature
embedding Zc ∈ RN×Lc .

Eα and Ec are MLPs and their respective outputs are con-
catenated to form Z = [Zo|Zc].

Similar to the contact generation model, we use another
transformer encoder (denoted as M) as the diffusion de-
noiser that is also trained to predict the clean samples. To
learn smooth and diverse hand motions and counter the
potential noise in the contact model’s prediction, we train
M using classifier-free guidance by randomly replacing the
contact features C with a learnable null token ∅ with a prob-
ability pf .

We observe that the latent feature Zc effectively guides
M to establish and maintain contact with the articulated
object, dynamically adjusting to changing contact patterns
while ensuring temporal consistency. However, at a more
fine-grained level, the generated motion is not free from
physical artifacts such as fingers being stuck between the
parts. Therefore, we introduce a contact map discrepancy
term during guidance, encouraging the noisy motion at each
denoising timestep to more precisely align with the contact
map output Ĉ from the contact model. Namely, for each
predicted clean hand Ĥρ

(t) at denoising timestep t, we com-

pute a derived contact map C̃ρ
(t) from Ĥρ

(t) to the nearest
object vertex:

C̃ρ
(t) =

argmin
h∈Ĥρ

(t)

d(h,v)− v , for v ∈ Ṽ

 , ρ ∈ {left, right}

(5)
In practice, we use a differentiable 1-nearest neighbor func-
tion for the above computation to ensure gradient propaga-
tion. The contact map guidance can be written as

X̃ρ
(t) = X̂ρ

(t) − λc∇X̂ρ
t

∥∥∥Ĉρ − C̃ρ
(t)

∥∥∥ , (6)

where λc is the guidance scale and ∇X̂ρ
t

denote the gradi-
ent with respect to the discrepancy term. Finally, we ap-

ply classifier-free guidance to combine the outputs with and
without Zc. The predicted clean motion at timestep t − 1
can be written as

X̃(t−1) = (1 + λf )X̃(t) −M(X̂(t), t,Zo∅). (7)

Since M does not predict dense MANO surface vertices,
we rely on an optimization-based MANO fitting described
in the next section to obtain the final 3D bimanual motions.

3.4. Physically Plausible Hand Motion
Our generated hand motions Ĥ only contain a subset of
MANO surface vertices and, therefore, some hand surface
areas may still experience minor penetration, momentary
loss of contact, or slight jitter after denoising. To address
this, we introduce an optimization-based MANO fitting to
further refine the predictions.

First, we estimate the MANO parameters Θ = [θ|β] for
both hands, where θ ∈ RN×51×2 and β ∈ R10×2, from the
predicted Ĥ. θ contains the root translation, rotation, and
the per-joint rotations of MANO, with all rotations repre-
sented as axis-angle vectors. We estimate Θ by minimizing
the following loss:

lMANO = ∥Ĥ− fMANO(θ,β)∥ (8)

fMANO is the MANO forward pass operator to retrieve fitted
hand keypoints based on optimized θ,β.

Next, we refine the estimated MANO parameters Θ to
reduce penetrations, temporal jitter and enforce contact at
the predicted points using three energy terms:

lreg = wprojlproj + wpenlpen + wacclacc (9)

Since our denoising outputs contain both Ĥ and D̂, the
projection loss lproj encourages the projection points of
hand keypoints based on the direction vectors, i.e. P =
fMANO(θ,β)+ D̂, to lie on the object surface, resolving the
potential floating artifact.

lproj =
∑
p∈P

min
v∈V

∥p− v∥ (10)

The dense predicted hand surface vertices after MANO fit-
ting, denoted as Ξ̂, are fed into the penetration loss [21]:

lpen =
∑

h∈Int(Ξ̂)

min
v∈V

∥h− v∥ , (11)

Int(Ξ̂) refers to the set of hand vertices inside the object.
Finally, we penalize the acceleration of hand vertices Ξ̂ :

lacc =
∑
hi∈Ξ̂

∥hi − 2 · hi−1 + hi−2∥ (12)

wproj, wpen and wacc are hyperparameters. We demonstrate
the effectiveness of the optimization in Sec. 4.
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3.5. Implementation Details
In data preprocessing, dmargin is set to 0.15 for scale nor-
malization. The contact model and the motion model share
the same architecture hyperparameters, i.e. they both have
eight transformer encoder layers with latent dimension 512.
Both models are trained with 50 diffusion steps on the
ARCTIC [14] dataset for 200 epochs, using the Adam op-
timizer [12] of learning rate 1e−4 with a cosine learning
rate scheduler [42]. DDPM noise schedule [24] is adopted
and the models directly predict clean samples. In addition,
Exponential Moving Average (EMA) models [22] are used
for better stability. The motion model has a contact condi-
tion dropout rate of 0.5. For classifier-free guidance [23],
the guidance scale λf is set to 0.5. We determine the
contact map guidance scale λc by the gradient norm, i.e.
λc = 1

∥∇X̂(t)∥ . Training is completed in less than two

days on a single A40 GPU. The post-processing is per-
formed for 100 iterations, with wproj = 100, wpen = 10 and
wacc = 1000 on the ARCTIC dataset. We set wacc to 10000
for the HOI4D dataset [40].

4. Experiments
Datasets. We evaluate our method on the ARCTIC
dataset [14], which contains fully annotated mesh se-
quences for bimanual interactions with 11 articulated ob-
jects. For each object, we use four motion sequences as
the test set and the rest as training sequences. Among the
four sequences, one contains only grasping and object re-
location, while the others include both grasping and artic-
ulation. In total, we have 257 training sequences and 44
test sequences. In addition, we evaluate our method on
HOI4D [40], a large-scale dataset containing 3D annota-
tions of articulated object movements and hand poses. We
follow the evaluation protocol of Zheng et al. [82] and use
two provided categories, pliers and scissors, with the same
train and test split.
Evaluation Metrics. Quantitatively measuring synthe-
sized motion has been a challenging pursuit. Toward this
goal, we evaluate the methods on a variety of metrics, each
measuring a specific aspect of motion generation. The
multi-modality metric, which measures the method’s abil-
ity to generate diverse results for the same object trajectory,
is computed using the mean average pairwise distance be-
tween all generated hand vertices by sampling 10 times for
the same trajectory (denoted as “Mul” in Tab. 1 and Tab. 3).
For evaluating the geometric feasibility of the synthesized
motions, we evaluate the extent of penetration and contact
feasibility. “Pen 1cm” is the percentage of motion frames
with hand vertex penetration, using a 1cm threshold. “CM”
measures the l1 distance of the contact map derived from
the generated hand motions from the predicted contact map.
This metric is only applicable to our ablations. “Con” mea-

Method Mul (cm) ↑ Accel
( cm

s2
)
↓ Pen 1cm (%) ↓ Con (%) ↑ Art (%) ↑

GT - 0.17848 1.0398 95.138 94.563

CAMS-B 8.5602 0.11959 42.519 98.915 76.704
MDM-B 0.55459 0.27666 66.71 93.657 73.734
OMOMO-B 0.038338 0.1969 30.435 96.917 80.094
Ours 6.9093 0.18846 2.0346 99.629 85.572

Table 1. Quantitative Comparison on ARCTIC. Our method
outperforms the state-of-the-art in penetration, contact, and artic-
ulation. Even though CAMS-B scores better in the multimodality
and acceleration, it exhibits low interaction plausibility, as seen in
high penetration percentage and qualitative results in Fig. 5.

sures the percentage of motion frames with object contact
and “Art” measures the percentage of motion frames where
the hand is in contact with the articulated part, out of the
frames with object articulation changes. In addition, we
compute hand vertex penetration percentage, contact, and
articulation consistency following CAMS [82]’s protocol on
HOI4D.

Baselines. Except for the concurrent work [79], no prior
works have tackled bimanual motion synthesis for articu-
lated objects given object trajectories under identical as-
sumptions. Therefore, we propose the following modifica-
tions to various baselines:
• CAMS [82] is a category-specific method that pro-

duces single-hand motions. CAMS-X denotes the cross-
category model trained by us on the HOI4D dataset and
CAMS-B is the bimanual model we adapted for the ARC-
TIC dataset.

• MDM [61] is a pioneer work for diffusion-based motion
synthesis. We change text-based conditioning to object
trajectory conditioning using our normalized part-based
BPS features and denote this variant as MDM-B.

• OMOMO [35] is a whole-body method, which generates
human-object interaction without finger articulations. In
our adaptation OMOMO-B, we generate hand joints in
stage one with contact constraints applied to all the joints.
In stage two, we predict the over-parameterized hand mo-
tions conditioned on joints.

For more details, we refer to the supplementary document.

Pliers Scissors

Pen (%) ↓ Con. Score ↑ Art. Score ↑ Pen (%) ↓ Con. Score ↑ Art. Score ↑

Ground Truth 0.000 1.000 1.000 0.046 1.000 0.970

Cat.Spec.

GraspTTA 0.555 0.779 0.420 0.454 0.993 0.849
GraspTTA w/ opt 0.294 0.727 0.321 0.812 0.994 0.959

ManipNet 0.548 0.984 0.892 0.391 0.917 0.417
ManipNet w/ opt 0.387 0.890 0.738 0.131 0.831 0.333

CAMSw/ opt 0.563 0.916 0.393 0.590 0.997 0.850
CAMS 0.004 1.000 1.000 0.080 0.999 0.989

Unified CAMS-X 0.017 0.485 0.015 0.198 0.858 0.167
Ours 0.044 0.966 0.597 0.591 1.000 0.853

Table 2. Evaluation on the HOI4D Dataset. We show compar-
isons in the category-specific setting (denoted as “Cat.Spec”) and
the cross-category setting where a unified model is trained (de-
noted as “Unified”). The numbers for “Cat.Spec” are taken from
CAMS [82]. Our method outperforms CAMS-X, and performs
comparatively with methods trained in a category-specific way.
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Figure 5. Qualitative Comparison. MDM-B struggles with establishing accurate contact, as seen in the hand-object gap in the scissors
and the box example. OMOMO-B’s rigid contact constraints make it prone to failure, especially with large wrist movements, like opening
a box. CAMS-B failed to generate plausible motions, since its stage-wise contact targets under-constrain MANO fitting in dynamic settings
with complex contact patterns and diverse object trajectories.

Figure 6. Diverse Results. We show diverse bimanual sequences together with the predicted contact maps on the laptop, ketchup and
mixer given the same unseen trajectory per object. Our method generates accurate finger placements guided by the predicted contact maps.

Method Mul (cm) ↑ Accel
( cm

s2
)
↓ Pen 1cm (%) ↓ Con (%) ↑ Art (%) ↑ CM(cm) ↓

GT - 0.17848 1.0398 95.138 94.563 -

Rep.
U-BPS 6.2551 0.28275 17.542 97.214 85.642 1.1072

NPA-BPS 6.317 0.28537 17.508 97.442 82.04 1.0789
MANO-Rep 6.4781 0.27243 22.201 95.255 76.814 1.6379

NP-BPS w/o G 6.4149 0.28233 20.414 98.093 82.079 1.0562
NP-BPS 6.97928 0.31398 20.273 98.481 83.089 1.1505

Contact.
w/o C 4.4894 0.31034 9.4481 96.129 79.591 -

w C 6.97928 0.31398 20.273 98.481 83.089 1.1505
w C + CG 6.9551 0.30371 16.496 97.351 84.227 1.1284

w C+CG+Opt 6.9093 0.18846 2.0346 99.629 85.572 1.1778

Table 3. Ablations for various object and hand representations and
ways to utilize contact information. The experiment in bold is our
proposed design.

4.1. Quantitative Results

We tabulate the quantitative comparison of the methods
in Tab. 1 and Tab. 2 for the ARCTIC and HOI4D
datasets, respectively. Our method outperforms MDM-B
and OMOMO-B in all metrics. Even though CAMS-B
scores better in multi-modality, acceleration, and contact,

we show qualitatively that CAMS-B struggles to produce
natural and plausible motions in Sec. 4.3.

In the single-hand setting on HOI4D (Tab. 2), our cross-
category model performs comparatively with the category-
specific baselines. In the cross-category setting, we outper-
form CAMS-X in terms of articulation and contact consis-
tency by a large margin, highlighting the advantage of our
method to handle a variety of geometries in a unified man-
ner. We refer the reader to the supplemental video for a
holistic assessment of our results.

4.2. Perceptual User Study
The interaction plausibility is difficult to assess using quan-
titative metrics alone. Hence, we conducted a perceptual
user study with 55 human respondents to evaluate our gen-
erated motions compared with OMOMO-B and MDM-B.
We exclude CAMS-B for the user study, as its motion qual-
ity is significantly subpar evident in Fig. 5 and our supple-
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Figure 7. User Study Results. We show the preference rate of Bi-
mArt against MDM-B and OMOMO-B. Our method outperforms
existing state-of-the-art for all objects covered in the user study.

mentary video. The user study contains 40 pairs of ani-
mations, covering five objects and four object trajectories
randomly sampled from the test set. We split the user study
into two subgroups, each covering two out of the four ob-
ject trajectories with 20 questions. In each question, we
present the participants with two animations with the same
object trajectory, one of which is generated by our method.
The survey has a force-choice style with the following ques-
tion: Which animation has a more natural hand motion that
aligns better with the object trajectory? The animations are
interactive, allowing the user to zoom or rotate the view to
access the quality accurately. We calculate p-values (z-test)
for our comparison with each method and observe statis-
tically significant results with p < 10−3 for all baselines.
We demonstrate that the users prefer our motions for every
object in Fig. 7.

4.3. Qualitative Results
We show qualitative comparisons in Fig. 5 and diverse sam-
ples from our method in Fig. 6. BimArt generates more nat-
ural and physically realistic motions for small objects that
require precise contact region geometry understanding, like
the “grabbing the scissors” example, and large objects with
significant articulation movements, like the “opening box”
example in Fig. 5. Fig. 6 shows three samples of hand
motions given the same object trajectory, demonstrating Bi-
mArt’s diversity.

4.4. Ablations
We present ablation studies to investigate the effect of our
design choices and report the results in Tab. 3. We split
the ablations into two sections, with the “Rep” section ab-
lating the different object representations and hand repre-
sentations. The BPS representations in Tab. 3 include Un-
normalized BPS (U-BPS), normalized part-agonistic BPS
(NPA-BPS), and our proposed normalized part-based BPS
(NP-BPS), all trained with contact conditions. We also ab-
late the effect of removing global states G from (NP-BPS

w/o G), leading to the lack of the object global movement
awareness in the contact generation and motion generation
model. As an alternative hand representation, MANO-Rep
refers to MANO 6D pose parameters with joint positions.
Notably, we do not apply contact map guidance and post-
refinement in this set of experiments to isolate the effect
caused by object and hand representations. The “Contact”
section demonstrates the effect of the contact condition, (i.e.
w/o C versus w C), contact map guidance (w C + CG), and
the optimization-based refinement (w C + CG + Opt).

The following observations can be drawn from the
Tab. 3. NP-BPS leads to the highest multi-modality and
contact percentage compared with the alternative BPS sam-
pling strategies. MANO-Rep leads to worse penetration,
contact, and articulation percentages, highlighting its limi-
tations compared to our proposed hand representation. NP-
BPS w/o G performs better in acceleration and contact
map discrepancy by focusing on articulation-aware hand
motions, while excluding global states, which we show
leads to physically implausible motions in the supplemen-
tary video. In contact ablations, contact conditioning leads
to a higher multi-modality, contact, and articulation per-
centage. Contact guidance helps the hand motions better
align with the contact maps, evidenced by a lower contact
map discrepancy. Our optimization-based refinement sig-
nificantly reduces the penetration percentage and the hand
motion acceleration while maintaining contact with the ob-
jects. For qualitative ablations, please refer to the supple-
mentary video.

5. Conclusion
Limitations. Although fairly robust to novel object tra-
jectories, our method is restricted to the limited number of
object categories as provided in the datasets (ARCTIC and
HOI4D). In the real world, however, one would like to gen-
eralize to new (and open-vocabulary) objects in a zero-shot
manner. We believe leveraging the common-sense knowl-
edge of existing multi-modal large language models would
facilitate such generalization [26, 37]. Our method could
also benefit from the incorporation of faster diffusion sam-
pling approaches such as DDIM [55], or Latent Diffusion
Modeling [7] to facilitate adoption in artistic creation pro-
cesses with limited time budgets.

In this work, we proposed BimArt, a novel bimanual mo-
tion synthesis method given the trajectory of an articulated
3D object. Our proposed feature representation leads to
high diversity in generated motions, providing the flexibility
for 3D artists and animators to sample multiple plausible in-
teractions for a single object trajectory. In both quantitative
metrics and the user study, our approach outperforms com-
peting methods in terms of naturalness and physical plau-
sibility, paving the way for more realistic and user-friendly
hand-object animation.
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A. Appendix – Overview
In this document, we first present a conceptual comparison
of our setting and approach in Appendix B. We provide ad-
ditional details such as data processing (Appendix C), base-
line adaptation (Appendix D), and additional results (Ap-
pendix E). Please refer to the supplementary video for ani-
mations.

B. Conceptual Comparison
Our method relies on fewer assumptions than the prior
works as shown in Tab. 4.

C. Data Processing
We follow the convention of the ARCTIC dataset [14],
defining the canonical space as the configuration where the
articulation axis aligns with the negative z-axis. For scale
normalization, we apply a heuristic to determine an articu-
lation angle that positions the object at a state likely to max-
imize its distance from the origin. Specifically, we set the
articulation angle to π

2 . For the mixer and capsule machine,
and to 0 for the scissors and espresso machine. For all other
objects, we set the articulation angle to π.

D. Baseline Details
OMOMO Adaptation In the original full-body setting,
OMOMO [35] predicts only the wrist positions in stage one.
Since the OMOMO dataset lacks finger articulation data,
the wrist, being the closest joint to the object, is the natural
choice for applying contact constraints. In contrast, in our
hand-only setting, all joints have the potential to interact
with objects. Limiting contact constraints to the wrist in this
context would be suboptimal. Therefore, we design stage
one to predict all hand joints, applying contact constraints
to each joint. In stage two, we refine the motion predictions
by estimating the hand poses, conditioned on all joints.

ArtiGrasp We also re-trained ArtiGrasp [78] on our
train/test split and evaluated the dynamic object grasping
and articulation task which performs grasping and articula-
tion in separate stages. Since the object’s initial state has
to be supported by the table in the simulator, we set the
relative change of the object state to be the same without vi-
olating the physical constraint (eg. the goal state should not
penetrate the table). ArtiGrasp cannot reach the object goal
state reliably at every run, unavoidably, the actual object
trajectory from the physics simulator will deviate signifi-
cantly from ours. Moreover, ArtiGrasp employs heuristics
transitioning from grasping to articulation, such as dropping
the object on the table and moving the hands apart before
articulating, resulting in low contact and articulation per-
centage. Due to the difficulty in standardizing the setting,

Method
Articulated

Objects
Bimanual

No Grasp
Ref.

Unified

ManipNet [76] ✗ ✓ ✓ ✓

GOAL [59] ✗ ✓ ✓ ✓

IMOS [16] ✗ ✓ ✗ ✓

MACS [53] ✗ ✓ ✓ (✗)
D-Grasp [9] ✗ ✗ ✗ ✓

ArtiGrasp [78] ✓ ✓ ✗ ✓

CAMS [82] ✓ ✗ ✗ ✗

BimArt ✓ ✓ ✓ ✓

Table 4. Conceptual Comparison to Prior Works. We highlight
that our work is the only one, which provides all desired func-
tionalities. No Grasp Ref. means that neither initial pose nor
goal pose are given as input. Unified refers to a single model that
can handle various object categories. MACS is only trained on
spheres, hence a bracket is added for the checkmark under Uni-
fied.

we exclude ArtiGrasp from our quantitative and qualitative
comparisons.

E. Additional Results
Besides providing the penetration percentage at 1cm thresh-
old in the main paper, we additionally provide it at 5mm as
shown in Tab. 5.

Method Pen 5mm (%) ↓

GT 30.4

CAMS-B 87.5
MDM-B 66.7
OMOMO-B 74.9

Ours 32.8

Table 5. Penetration percentage at 5mm threshold

Qualitatively, we visualize diverse contact maps our
method generates in Fig. 9. Fig. 8 shows the generalization
ability of our method to intra-class variations in the HOI4D
dataset [40]. Our model is trained in a cross-category man-
ner and we show the qualitative results for all six unseen
objects.

F. BPS Analysis
We present additional BPS feature analysis in Tab. 6, by in-
terpolating the contact values associated with sparse object
vertices mapped by the basis points using [52] and com-
pute the L1 loss for the densified per vertex contact maps
and the ground truth contact maps. A lower error reflects
a denser BPS mapping and better geometric representa-
tion. The results are broken down into cross-category av-
erages and object-specific errors, with errors reported for
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Average Microwave Phone Box Ketchup Mixer Waffle Iron Capsule Machine Notebook Scissors Laptop Espresso Machine

U-BPS-Top 0.546 0.608 0.244 0.454 0.387 0.838 0.705 0.513 0.589 0.401 0.484 0.746
PA-BPS-Top 0.342 0.507 0.137 0.415 0.221 0.377 0.427 0.394 0.288 0.093 0.341 0.533
P-BPS-Top 0.258 0.327 0.152 0.373 0.114 0.336 0.413 0.185 0.265 0.081 0.349 0.216

U-BPS-Bottom 0.552 0.651 0.25 0.5 0.387 0.725 0.57 0.572 0.543 0.543 0.523 0.809
PA-BPS-Bottom 0.341 0.482 0.466 0.194 0.377 0.349 0.103 0.36 0.378 0.374 0.263 0.145
P-BPS-Bottom 0.38 0.645 0.173 0.507 0.232 0.46 0.368 0.472 0.27 0.094 0.395 0.536

U-BPS 0.554 0.645 0.247 0.48 0.387 0.763 0.643 0.568 0.562 0.468 0.504 0.807
PA-BPS 0.32 0.487 0.14 0.444 0.199 0.366 0.404 0.35 0.272 0.099 0.36 0.378
P-BPS 0.361 0.603 0.163 0.449 0.208 0.418 0.393 0.453 0.268 0.087 0.373 0.527

Table 6. Contact Map Error (in cm) due to BPS mapping. We present the average and per-category contact map errors resulting from
the sparse mapping of BPS features. Both part-agnostic BPS (PA-BPS) and the proposed part BPS (P-BPS) achieve a denser mapping
compared to BPS features without scale normalization (U-BPS), resulting in smaller contact map errors. The proposed part-based BPS
method further enhances mapping density for the top part of the object (which corresponds to the movable part in canonical space), by
allocating equal feature dimensions to individual parts irrespective of their surface area.

Figure 8. Qualitative Results on HOI4D. We present visualiza-
tions of results for six unseen objects from the HOI4D dataset.
Each row illustrates three frames corresponding to the actions
of approaching, lifting, and articulating. Notably, our model is
trained in a cross-category way.

the top part, bottom part, and whole object. Both part-

agnostic BPS (PA-BPS) and the proposed part-based BPS
(P-BPS) achieve lower contact errors compared to unnor-
malized BPS (U-BPS) with the same BPS feature dimen-
sions. PA-BPS achieves a lower average contact map error
for the object’s bottom parts as the they tend to have a larger
surface area in the ARCTIC dataset [14]. Notably, P-BPS
reduces the contact map error for the objects’ top parts (the
movable component in our canonical space) by allocating
equal feature dimensions to the top and bottom parts.
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Figure 9. Contact map visualizations We present visualizations of the predicted left and right contact maps for seven frames in a sequence.
For each object, we include two examples: a “grab” scenario, where the object’s articulation remains unchanged, and an “articulate”
scenario, where the object undergoes articulation. In the “articulate” examples, the contact region is established at the moving part and
remains consistent throughout the articulation process. In contrast, the “grab” examples reveal shifts in the grasping patterns, suggesting
that one hand holds the object while the other adjusts its contact point. The Vector Heat method [52] is employed to interpolate the contact
values from the sampled object vertices to the full object surface. The predicted contact values are then normalized to a range between 0
and 0.2 meters. In the resulting visualization, red indicates that the hand should be close to the object’s surface, while blue signifies that
the hand is farther away.
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